Effects of Oxidative Irrigants on Root Dentin Structure: Attenuated Total Reflection Fourier Transform Infrared Spectroscopy Study

Atabek Didem¹, Bodur Haluk¹, Yalçın Gözde¹, Kalaycı Şükrü²

¹DDS, PhD, Department of Pediatric Dentistry, Faculty of Dentistry, Gazi University, Ankara, Turkey. ²PhD, Faculty of Chemistry, Gazi University, Ankara, Turkey.

Abstract

Aim: The aim of this study was to compare the effect of oxidative irrigants on the organic and inorganic structure of root canal dentin.

Methodology: Fifty human 2nd premolar roots were used in the study. The dentin specimens prepared from those teeth were immersed in liquid nitrogen for 15 min. The frozen composition was titrated in a mixer and the obtained dentin powder was kept frozen at -70°C until use. Ten groups of 50mg dentin powder were immersed in agents (A: Ozone for 100 or 200 sec, B: 5.25% NaOCl, C: 2.25% NaOCl, D: 2% Chlorhexidine, E: 0.9% NaCl (control)) for 5 or 10 min. An Attenuated Total Reflection Fourier Transform Infrared Spectrophotometer (ATR FT-IR) was used to analyze dentin powder. The data were statistically analyzed by using Kruskall-Wallis analysis of variance.

Results: In all groups, collagen degradation was significantly increased compared to the control and 2% CHX groups (p<0.05). The use of ozone increased collagen degradation significantly compared to the use of 2.25% NaOCl and 2% Chlorhexidine for 5 min (p < 0.05). No significant differences were observed between ozone and 5.25% NaOCl-treated groups (p > 0.05).

Conclusions: The structural composition of human dentin was significantly affected by the use of oxidative irrigants at higher concentrations.

Introduction

The successful treatment of an infected root canal involves a combination of mechanical and chemical means [1]. Using mechanical instrumentation alone might reduce the number of bacteria in the root canal system by 50%. Several irrigating solutions, such as Chlorhexidine (CHX) and sodium hypochloride (NaOCl), are used during endodontic treatment [2]. With different exposure times and concentrations, NaOCl is the most widely recommended irrigation solution on the basis of its antimicrobial potency [1,3,4] and capability to dissolve remnant necrotic tissue [5,6]. However, there are still some concerns with respect to the toxic effects [2], bad smell and taste [5], and allergic reactions [6]. In addition, as a nonspecific oxidizing and proteolytic agent, NaOCl oxidizes the organic matrix, denatures the collagen component of the smear layer, and affects dentin mechanical properties [3,7]. Therefore, root-treated teeth are becoming more susceptible to deformation and fractures [8,9]. General agreement regarding the optimal concentration and duration of NaOCl treatment does not exist. Today, researchers are still looking for an alternative endodontic antiseptic with high antimicrobial potential and fewer side effects.

CHX has been suggested as an endodontic irrigant because of its antibacterial effects, lower cytotoxicity, and greater substantivity than NaOCl [10,11]. However, for CHX the effects on the structural integrity of dentin have not been evaluated.

Ozone (O₃) is a naturally occurring compound consisting of three oxygen atoms. As a gas, ozone has diffusion capacity in the deeper layers of dentin and dentinal tubules [12]. It has been proposed as an alternative oral antiseptic in dentistry. Further, results of studies have shown that ozone in the gaseous or aqueous phase has strong oxidizing power with reliable microbial effects [1,12-16]. It has been reported that oxidation mediated by ozone destroys the cell walls and cytoplasmic membranes of bacteria and fungi. After the membrane is damaged by oxidation, the permeability increases and ozone molecules can enter the cells and cause microorganisms to die [13]. Nowadays, the gaseous or aqueous phases of ozone have shown to be a powerful and reliable antimicrobial agent against bacteria, fungi, protozoa, and viruses [12]. In this context, ozone is a possible alternative antiseptic agent in dentistry because of its reported high antimicrobial power and low likelihood of drug resistance. On the other hand, it is also a very powerful oxidizing agent and the effect of gaseous ozone on the collagen degradation of root canal dentin has not been evaluated yet.

The aim of this study was to compare the exposure, time-dependent, and concentration-dependent effects of oxidative irrigants (NaOCl and gaseous ozone) on the organic and inorganic structure of root canal dentin.

Materials and Methods

The study was approved by the Ethics Committee of the Gazi University, Faculty of Dentistry and fifty human 2nd premolar roots were used in the study. The teeth were stored in 0.9% NaCl with 0.02% sodium azide at 4°C for no more than 1 month. By using tungsten carbide burs, barbed broaches, and stainless steel files, radicular dentin samples, cementum, and pulpal tissues were prepared and immersed in liquid nitrogen for 15 min. The frozen composition was titrated in a mixer and the obtained dentin powder was kept frozen at -70°C until use. Ten groups of 50mg dentin powder were immersed in 50 ml of agents (A: Ozone for 100 or 200 sec., B: 5.25% NaOCl, C: 2.25% NaOCl, D: 2% Chlorhexidine, E: 0.9% NaCl (control)) for 5 and 10 minutes. Each aliquot of treated dentin powder
was washed 3 times with deionized water, and air-dried at 37°C. Ozonated water was prepared using an ozone generator (Ozone, model MVO – UV, Anceros) The ozone generator was connected to a cylinder of pure oxygen that was calibrated to release oxygen at 0.4 mg/L per min. For the production of the ozonated water, 250 mL of autoclaved distilled water was placed in the system with a glass tube coupled to the ozone generator. Next, O₃ was bubbled through the water for 20 min, thereby producing O₃ at a concentration of 10 mg/L/min. A Fourier Transform Infrared Spectrophotometer (FT-IR) with a diamond Attenuated Total Reflection (ATR) setup was used to obtain infrared spectra for analysis and characterization of dentin specimens. FT-IR spectra of dentin powder were collected in triplicate for each solution concentration and time period [3,7,17-19]. Spectra were obtained between 400 and 4000 cm⁻¹ at 4 cm⁻¹ resolution by using 32 scans.

For each irrigation solution tested in the study, amide bands I, II, and III from the intact collagen component of mineralized dentin and phosphate and carbonate bands from the apatite component were revealed by ATR FT-IR. The peaks in these spectra (800-2,000/cm⁻¹) have been assigned according to the literature [3].

The data was statistically analyzed by using Kruskall-Wallis analysis of variance on ranks. Post hoc comparisons were performed with Dunn multiple comparison tests.

Results

Concentration-dependent and time-dependent effects of solutions on collagen depletion were evaluated using the collagen and apatite ratio (the ratio of absorbance of amide I peak to phosphate ν₃ peak) (Figure 1). Smaller ratios of amide:Phosphate values corresponded to greater extent of dentin deproteination. The carbonate: Phosphate ratio (the ratio of absorbance of carbonate ν₂ peak to phosphate ν₃ peak) revealed the effects of solutions on inorganic structure of dentin (Table 1).

No difference was observed in the structure of samples exposed to 0.9% NaCl (control). When compared to the control group in terms of dentin degradation, statistically significant differences were found in NaOCl and ozone groups (p<0.05). CHX revealed statistically insignificant differences compared to control group (p > 0.05).

Each solution’s time-dependent effects revealed an insignificant decrease in the apatite/collagen ratio and an insignificant increase in the amide/phosphate and carbonate/phosphate values (p>0.05). The use of ozone resulted in a significant decrease in the apatite/collagen ratio as a result of apatite dissolution and creation of a demineralized collagen matrix compared with 5 min application of 2.25% NaOCl (p<0.05). Insignificant differences were observed between ozone- and 5.25% NaOCl-treated groups (p>0.05).

The comparison between groups in terms of effecting the most dentin degradation is, respectively, ozone, 5.25% NaOCl, 2.25% NaOCl.

Discussion

The common principle of endodontic treatment is to keep the pulp chamber and root canals flooded with irrigants during the entire period of chemo mechanical preparation to maximize its instrument lubricant, tissue dissolution, and antimicrobial effects [7]. On the other hand, root canal treatment with different irrigants causes alterations in the chemical and structural composition of human dentin [7,9,20]. In the study, the effects of different irrigation regimes on the amide/
Table 1. Comparison of the apatite/collagen, amide/phosphate and Carbonate/Phosphate ratios derived in the groups.

<table>
<thead>
<tr>
<th></th>
<th>Ozone</th>
<th>2.25% NaOCl</th>
<th>2% CHX</th>
<th>Control (0.9% NaCl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 sec</td>
<td>200 sec</td>
<td>5 min</td>
<td>10 min</td>
</tr>
<tr>
<td>Apatite/Collagen</td>
<td>14.659<sup>a,b,c</sup> (± 4.22)</td>
<td>15.968<sup>b</sup> (± 4.62)</td>
<td>12.856<sup>b</sup> (± 1.79)</td>
<td>14.22<sup>b</sup> (± 2.46)</td>
</tr>
<tr>
<td>Amide/Phosphate</td>
<td>0.15<sup>a,b</sup> (± 0.32)</td>
<td>0.124<sup>a,b</sup> (± 0.22)</td>
<td>0.55<sup>b</sup> (± 0.22)</td>
<td>0.338<sup>b</sup> (± 0.27)</td>
</tr>
<tr>
<td>Carbonate/Phosphate</td>
<td>0.108<sup>c</sup> (± 0.11)</td>
<td>0.094<sup>b</sup> (± 0.50)</td>
<td>0.172<sup>c</sup> (± 0.23)</td>
<td>0.152<sup>c</sup> (± 0.02)</td>
</tr>
</tbody>
</table>

^a = When compared with the control group, all apatite/collagen ratios from different time periods were significantly higher (p<0.05).
^b = When compared with the 2% CHX group, all apatite/collagen ratios from different time periods were significantly higher (p<0.05).
^c = When compared with the control group, all carbonate/phosphate ratios from different time periods were significantly higher (p<0.05).

In addition, similarly, all oxidative irrigant groups influenced the inorganic phase (amide: Phosphate and carbonate: Phosphate ratios) of root dentin in the following order: Ozone, 5.25% NaOCl, 2.25% NaOCl.

The result of this paper is in agreement with the other previous studies of NaOCl that higher concentration associated with the oxidizing capacity had the highest effect on dentin degradation [3,7,19,22]. This result can also be explained by the knowledge that the thermal stability of collagen is reduced by the oxidants [22]. In addition, intrabifibrillar and extrabifibrillar apatite crystallites protect the collagen matrix from thermal denaturation but the apatite crystallites were unable to protect the collagen matrix from oxidative chemical degradation [7].

An important finding of the paper was that the different exposure time of each irrigant with the same concentration produced insignificantly different spectra analysis. This supports the findings of previous studies that the exposure times produced negligible differences of dentin deproteination [3,17,18,23]. These results report that the extent of deproteination of irrigants is not related to the exposure time.

The previous studies about dentin deproteination were focused on NaOCl in particular [3,7,17-19,23]. To our limited knowledge, this is the first study in which ozone application as an endodontic irrigant was evaluated on this subject. Based on the results of the study, ozone resulted in the most dentin deproteination thanks to its high oxidizing capacity.

References
3. Hu X, Peng Y, Sum CP, Ling J. Effects of concentrations and

