The Effect of Smoking on Components of Gingival Crevicular Fluid in Patients with Periodontal Disease

Tsiraki Marina, Tsachouridou Ioanna, Matafis Maria, Tsalikis Lazaros, Konstantinidis Antonios
Department of Preventive Dentistry, Periodontology and Implant Biology, Aristotle University of Thessaloniki, Greece

Abstract

Aim: Smoking is one of the major environmental risk factors for periodontal diseases. It may be hypothesized that the gingival crevicular fluid profile in periodontal patients who smoke may differ from the profile of non-smokers. The aim of this literature review is to examine if smoking affects the composition of gingival crevicular fluid in patients with chronic periodontitis.

Methods: Databases were searched from 2000 to 2014 using various combinations of keywords. Titles and abstracts of articles that fulfilled the eligibility criteria were screened by the authors and checked for agreement. Only articles published in English were reviewed.

Results: Twelve studies were included. One study reported no differences in IL-1β and IL-1-ra between smokers and non-smokers, while another study showed significantly lower concentration of IL-1β in smokers in deep bleeding sites and IL-ra in all sites. Two studies reported significantly reduced IL-ra in smokers. One study found significantly less U-PA, IL-6, IL-12 and IL-8 in smokers, while another showed increased myeloperoxidase (GM) in smokers. Two studies reported no significant differences between the groups as for their cytokine and inflammatory mediator release. One study showed different vascular function and another one reported decreased host defense in smokers, while another found the opposite results. Conclusion: According to the existing controversial data, an overall uniform conclusion could not be reached about the GCF profile in smokers and non-smokers periodontal patients. It is therefore suggested that further research should be conducted, focusing on the same components of GCF and utilizing the same methods of collection in order to gain more solid knowledge on the similarities or differences of the GCF profile in smokers and non-smokers periodontal patients.

Key Words: Periodontitis, Periodontal disease, Smoking, GCF

Introduction

Smoking is one of the major environmental risk factors for periodontal diseases [1,2]. It increases the risk of developing periodontitis (Odds Ratio 2, 82) [3]. Smokers tend to be more susceptible to advanced and aggressive forms of periodontal diseases [4,5] and are at greater risk of exhibiting more severe bone loss [6,7]. As for the clinical evaluation after treatment, smokers tend to respond less favorably [8-10] and present with persistent periodontitis more frequently [11]. Regarding the periodontal pathogens that colonize the subgingival microflora in smokers, the results are conflicting [12-15]. Thus, researchers suggest that the main effect of cigarette smoking as a risk factor for chronic periodontitis is the alteration of host response, including antibody production, neutrophil/monocyte activities, vascular function and cytokine-inflammatory mediator release [16,17].

Gingival crevicular fluid (GCF) is initially formed as a transudate of interstitial fluid produced by osmotic phenomena in the basement membrane, which then becomes an inflammatory exudate, due to increased permeability of blood vessels after chemical or mechanical stimulation. Thus, GCF has at first a similar concentration as interstitial fluid and while it traverses inflamed tissues it picks up enzymes and other products of cell and tissue degradation, and ends up being a true exudate of serum, as the inflammation proceeds [18,19].

Aim

The aim of this literature review is to examine if smoking affects the composition of gingival crevicular fluid in patients with chronic periodontitis.

Materials and Methods

Focused question

The addressed focused question was “Does smoking affect the composition of GCF in patients with chronic periodontitis?”

Eligibility criteria

The selection criteria encompassed the following: 1. Original articles; 2. Human studies; 3. Clinical Trials; 4. Meta-Analysis; 5. Randomized Controlled Trials; 6. Reviews; 7. Articles written in English language; 8. Articles published from 2000 to 2014. Experimental studies, letters to the editor, historical reviews, case reports and unpublished articles were excluded.

Search strategy

MEDLINE/ PubMed (National Library of Medicine), Embase, Cochrane Database and Ovid (via heal-link) were searched for relevant articles, using the following keywords in various combinations: “smoking”, “tobacco”, “gcf”, “gingival crevicular fluid”, “periodontal disease” and “periodontitis”. A hand search was also performed. Titles and abstracts of articles that satisfied the eligibility criteria were screened by the authors and checked for agreement. The full-text of the articles judged by the title and abstract to be relevant were read and independently assessed against the selection protocol. Any disagreement between the authors was resolved via discussion.

The studies that were finally included in the present review were controlled for confounding parameters, including age, smoking, body mass index, medication, systemic health conditions and alcohol consumption. Letters to the editor, historic reviews and unpublished articles were excluded. The initial search yielded 101 articles in Pubmed, 177 articles in Embase, 15 articles in Cochrane Database and 15 articles in
Boström et al. [20] studied the effect of smoking on the GCF levels of interleukin-1β (IL-1β) and its receptor antagonist IL-1ra in patients with moderate-to-severe periodontitis. Mean level of IL-1β and IL-1ra was not found to be different between smokers and non-smokers. Similarly, Erdemir et al. [21] found no differences in IL-6 and tumor necrosis factor (TNF-a) (3rd and 6th month of observation).

In contrast to the above studies, Rawlinson et al. [22] found statistically significant differences for both IL-1β and IL-1ra in deep bleeding sites between smokers and non-smokers and Ovid. After deleting the diplotypes and screening the full text for suitability, twelve studies were finally selected and processed for data extraction (Figure 1).

Results

Outcome
The selected papers are summarized in Table 1. Table 1 also provides a short summary of the patient population, the smoking status, the biological parameters that were investigated and the results of each study.

![Diagram](image1.png)

Figure 1. 101 articles in PubMed, 177 articles in Embase, 15 articles in Cochrane Database, 15 articles in Ovid.
<table>
<thead>
<tr>
<th>Authors (publication date)</th>
<th>Groups</th>
<th>Smoking status</th>
<th>GCF sampling</th>
<th>Biological parameter of the biological parameter</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boström et al. 2000</td>
<td>40 subjects • 22 smokers • 18 non smokers</td>
<td>Smokers: 20 cigarettes/day≥31 years Non smokers: never smoked</td>
<td>Aspiration method</td>
<td>IL-1β, IL-1ra</td>
<td>ELISA No significant differences either in IL-1b or IL-1ra between smokers and non smokers(p>0,05)</td>
</tr>
<tr>
<td>Fraser et al. 2001</td>
<td>28 subjects • 14 smokers • 14 non smokers</td>
<td>Smokers ≥10 cigarettes/ day≥3 years Non smokers: no cigarettes in the previous 10 years</td>
<td>Periopaper strip into the gingival crevice for 30 sec</td>
<td>s ICAM-1</td>
<td>ELISA s-ICAM1: significantly lower in smokers compared with non smokers(p<0,05)</td>
</tr>
<tr>
<td>Rawlinson et al. 2003</td>
<td>23 subjects • 13 smokers • 10 non smokers</td>
<td>Smokers :15-79 pack years(mean 32,5±17,75)</td>
<td>Periopaper strip 1 mm into the gingival crevice or pocket entrance for 3 min</td>
<td>IL-1β, IL- 1ra</td>
<td>ELISA IL-1b: significantly lower concentration in smokers for deep bleeding sites(p<0,05) IL-1ra: significantly lower concentration in smokers for healthy, deep non-bleeding and deep bleeding sites</td>
</tr>
<tr>
<td>Kurtis et al. 2007a</td>
<td>41 subjects • 22 smokers • 19 non smokers</td>
<td>Smokers : 20 cigarettes/ day Non smokers: never smoked</td>
<td>Periopaper strip into the gingival crevice for 30 sec</td>
<td>IL- 6, TNF- α</td>
<td>ELISA No significant differences between smokers and non smokers in the concentration and total amounts of IL-6 and TNF-a both in the 3rd and 6th month after non-surgical periodontal therapy(p>0,05)</td>
</tr>
<tr>
<td>Petropoulos et al. 2004</td>
<td>33 subjects • 14 smokers • 19 non smokers</td>
<td>Smokers :not defined Non smokers: never smoked or ex-smokers having stopped at least 2years before</td>
<td>Durapore strip in the pocket for 10 sec</td>
<td>IL- 1α</td>
<td>ELISA IL-1α: significantly reduced in smokers(p<0,05)</td>
</tr>
<tr>
<td>Buduneli et al. 2005</td>
<td>60 subjects • 20 patients with chronic gingivitis (10 smokers,10 non smokers) • 20 patients with chronic periodontitis (10 smokers, 10 non smokers) • 20 periodontally healthy adults (10 smokers, 10 non smokers)</td>
<td>Smokers :≥10 cigarettes/ day≥5-years Non smokers: never smoked</td>
<td>Periopaper strip in the orifices of gingival sulcus/pocket for 30 sec</td>
<td>Plasminogen activator system protein(s(PA))</td>
<td>ELISA No significant differences in t-PA and PAI-1 level and the ratios of PAs to PAIs between smokers and non smokers (p>0,05) • u-PA level: significantly lower in smokers (p<0,05)</td>
</tr>
<tr>
<td>Kurtis et al. 2007b</td>
<td>42 subjects • 21 smokers with chronic periodontitis • 21 non smokers with chronic periodontitis</td>
<td>Smokers: ≥10 cigarettes/ day≥5-years Non smokers: never smoked</td>
<td>Periopaper strip into the gingival crevice ≤1 mm for 30 sec</td>
<td>PGE2- TBARS</td>
<td>ELISA No significant differences in PGE2, TBARS levels between smokers and non smokers at baseline(p>0,05) No significant differences in PGE2 levels between smokers and non smokers after therapy(p>0,05) No significant differences in TBARS levels between groups 2 and 4(p<0,05) after therapy Significantly lower TBARS levels in group 3(smokers) compared with group 1 (non smokers) after therapy(p<0,05)</td>
</tr>
<tr>
<td>Buduneli et al. 2009</td>
<td>58 subjects • 29 smokers with chronic periodontitis • 29 non smokers with chronic periodontitis</td>
<td>Smokers ≥10 cigarettes/ day≥5-years Non smokers: never smoked</td>
<td>Periopaper strip into the gingival crevice ≤1 mm for 30 sec</td>
<td>Metalloproteinases 8 (MMP-8)</td>
<td>ELISA No significant differences in MMP-8 levels between smokers and non smokers at baseline after therapy(p<0,05)</td>
</tr>
<tr>
<td>Kurtis et al. 2007b</td>
<td>20 subjects • 10 smokers with chronic periodontitis • 10 non smokers with chronic periodontitis</td>
<td>Smokers ≥10 cigarettes/ day≥7-years Non smokers: never smoked</td>
<td>Periopaper strip in the gingival sulcus/pocket for 30 sec</td>
<td>IL-17, receptor activator of nuclear factorkappa B ligand (sRANKL), osteoprotegerin (OPG)</td>
<td>ELISA No significant differences in the levels of IL-17, s RANKL, OPG between smokers and non smokers at baseline and 4 weeks after treatment(p<0,05)</td>
</tr>
</tbody>
</table>
The majority of the reviewed articles studied the differences in the GCF levels of various cytokines and other inflammatory mediators among smokers and non-smokers. It is evident that there are great differences among the relevant studies, which makes comparison impossible. It is also noteworthy that only one study [25] measured the levels of cotinine in GCF and plasma to confirm the smoking status of the patients.

With regards to interleukins, the results are conflicting. The existing articles study many different types of interleukins, so an overall conclusion cannot be drawn. The interleukins mostly studied were IL-1α, IL-1β and IL-1ra, for which some authors found differences between smokers and non-smokers and others showed no difference. Some studies investigated other biological parameters, such as IL-6, TNF-α, sICAM-1, IL-7, IL-15 and TBARS, but since there are no similar studies for comparison, their results cannot be yet of important value.

Finally, three studies utilized a different point of view, investigating whether there is any difference in the composition of GCF in smokers and non-smokers, before and after the periodontal therapy. Among the various parameters studied, significant differences were noticed after therapy only in smoking patients receiving flurbiprofen in combination with periodontal treatment.

Discussion

The present review assessed all current (up to May 2014) available evidence about the correlation of smoking and the composition of GCF in patients with chronic periodontitis. The majority of the reviewed articles studied the differences in the GCF levels of various cytokines and other inflammatory mediators among smokers and non-smokers. It is evident that there are great differences among the relevant studies, which makes comparison impossible. It is also noteworthy that only one study [25] measured the levels of cotinine in GCF and plasma to confirm the smoking status of the patients.

With regards to interleukins, the results are conflicting. The existing articles study many different types of interleukins, so an overall conclusion cannot be drawn. The interleukins mostly studied were IL-1α, IL-1β and IL-1ra, for which some authors found differences between smokers and non-smokers and others showed no difference. Some studies investigated other biological parameters, such as IL-6, TNF-α, sICAM-1, IL-7, IL-15 and TBARS, but since there are no similar studies for comparison, their results cannot be yet of important value.

Finally, three studies utilized a different point of view, investigating whether there is any difference in the composition of GCF in smokers and non-smokers, before and after the periodontal therapy. Among the various parameters studied, significant differences were noticed after therapy only in smoking patients receiving flurbiprofen in combination with periodontal treatment.

Conclusion

The existing literature cannot provide a solid conclusion with regards to the effect of smoking in the composition of GCF fluid in periodontal patients. Further studies of similar methodology and focus of investigation are needed, in order
to determine the precise relationship between smoking and the GCF profile in patients with chronic periodontitis.

*The integration of this study was co-financed by

References
